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Abstract – Quantifying the capacity of a given node or a bunch of nodes in maintaining a system’s
controllability is a crucial problem in complex networks and control theory. We give a systematic
analysis of the ability of a single node or a pairs of nodes to control an undirected unweighted
chain and ring. By combining algebraic theory and graph spectrum analysis, we derive analytic
expressions for the control range of some given control inputs and find that complex phenomena
emerge even from these simplest graph structures. Specifically, the control range is sensitive to
the location of driver nodes and shows complex periodic behaviors. Our findings have implications
for evaluating the control range and practically controlling complex networks.

Copyright c© EPLA, 2016

Introduction. – Controlling collective dynamics is the
ultimate goal of investigating complex natural or techno-
logical systems, in which the interaction patterns among
dynamical elements modeled as complex networks play
crucial roles [1,2]. The past few years have witnessed
the rapid development of control theory for complex
networked systems [3], among which two representative
theoretical frameworks are the structural control theory
(SCT) [2] and the exact control theory (ECT) [4]. A great
deal of efforts have been motivated by the development
of the two control frameworks [5–17]. The central issue
in network control is identifying a minimum set of driver
nodes, by directly controlling which the network can be
fully controlled to reach any target state under certain con-
straints. Practically, however, some driver node discerned
by the control theories may be not externally accessible,
rendering full control of a network from a minimum set
of driver nodes impossible. On the other hand, in some
real situations, it is only necessary to control a fraction of
nodes rather than all nodes. Thus, an alternative question
is how to determine which nodes are indirectly controllable
by directly controlling a given set of externally accessible
nodes. Despite some pioneer efforts dedicated to address-
ing this question [18,19], we still lack a general and theo-
retical approach available for any types of networks. Even
for a very simple regular network, a full understanding of
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the control range in terms of directly controlling a small
fraction of nodes is yet lacking.

In this letter, we explore the control range of two simple
regular graphs —chain and ring— for a given set of exter-
nal inputs. We offer theoretical predictions for the control
range, i.e., the number of controllable nodes for a given
set of inputs at any locations. Among the nodes two types
of interactions are considered which are characterized by
the Laplacian matrix and the adjacency matrix, respec-
tively. We find that complex phenomena emerge in these
simple graphs. In particular, the control range is very
sensitive to the location of imposed input signals and sev-
eral periodic behaviors are observed. The analytical pre-
diction based on eigenvector decomposition indicates that
the control range is closely related to integer factoring and
prime numbers, which accounts for the complex phenom-
ena. Numerical results show an exact agreement with the
analytical results for both regular graphs. Our findings
gain insight into the complexity in controlling complex
networks and are valuable for developing a general theo-
retical framework for evaluating control range and practi-
cally controlling complex networks.

Model and method. – Consider a controlled network
that has N nodes, as described by the following linear
ordinary differential equations [20]:

ẋ = Ax + Bu, (1)

where the vector x = (x1, . . . , xN )T represents the state
of each node at time t, A = (aij)N×N ∈ R

N×N denotes
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the coupling matrix of the system, B is the N ×m control
matrix and u(t) is the input signal.

According to Kalman’s rank condition [21,22], sys-
tem (1) is controllable if and only if the N × Nm con-
trollability matrix C = [B,AB,A2B, . . . , AN−1B] has
full rank. The control range R, defined as the rank of
the controllability matrix C (R ≡ rank(C)), specifies
the dimension of the controllable subspace of the sys-
tem [21,22]. In other words, control range R quantifies the
number of nodes that the control matrix B can effectively
control.

In this letter, our goal is to theoretically and numerically
explore the control range R of simple regular graphs for
some certain given inputs. To achieve this goal, we employ
the Popov-Belevitch-Hautus (PBH) [23,24] test theory as
an alternative to Kalman’s condition to offer theoretical
results for the control range of regular graph and reveal the
emerging complexity. In particular, the PBH test speci-
fies uncontrollable subspace in terms of eigenvalues and
eigenvectors, which allows us to derive the dimension of
controllable subspace analytically.

Specifically, according to PBH test theory, if the sys-
tem (1) is not fully controllable, there exists an un-
controllable state vector α that satisfies the following
condition:

(AT − λI)α = 0,

BTα = 0,
(2)

which means α ∈ Vλ ∩ N(BT), where Vλ is the subspace
of eigenvalue λ and N(BT) is the null space of BT. For
a symmetric matrix A, any two eigenvectors of distinct
eigenvalues are orthogonal [25,26].

It can be proven that the uncontrollable subspace is
Vλ ∩ N(BT), which is the orthogonal complement to the
controllable subspace [27,28]. Thus, we have

R = N − dim(Vλ ∩ N(BT)), (3)

where dim represents the space dimension, which means
the control range measurement R is the number of eigen-
vectors of A that violate eq. (2).

We use eq. (3) to explore the control range R of two
simple regular networks —chain and ring— for some rep-
resentative external inputs. It is noteworthy that although
the controllability of the simple regular graphs has been in-
tensively studied previously [4,27,29,30], the control range
is still intact prior to our current work.

According to the ref. [4], the minimum number of driver
nodes for fully controlling a chain graph and a ring graph
are one and two, respectively. Thus, we consider a single
input case for the chains and double input case for the
rings and focus on how the locations of the imposed in-
put signals affect the control range R. Below, we derive
analytical results of R for chains and rings with differ-
ent sizes and different locations of external inputs based
on eq. (3).

i

j

i

Fig. 1: (Color online) Illustration of network models and con-
struction in this letter. (a) Chain graph with an external con-
trol input imposed on node i, represented as a wavy arrow.
(b) Ring graph with node i and node j are both controlled.
When i = j, the control inputs degenerate to one controller.

Chain. – The Laplacian matrix of a chain with N
nodes has the following structure:

AL =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

and all its eigenvalues are given as λk = 2 −
2 cos [π(k − 1)/N ] for k = 1, . . . , N [31–33].

As shown in fig. 1(a), with a single control signal applied
at node i, two subchains with size i− 1 and N − i are iso-
lated from the chain, which is marked by blue and green,
respectively. When we only directly control node i, the
control matrix B reduces to a column vector bi with a sin-
gle non-zero entry. We can prove that the control range
R can be calculated via

Ri = N − {GCD(2i − 1, 2[N − i] + 1) − 1}/2, (5)

where GCD(m,n) is the greatest common divisor of the
two positive integers (m and n) (see appendix for the
proof).

The numerical results of Ri for a chain of 30 nodes with
different input locations are shown in fig. 2(a). Complex
behavior emerges, as suggested by eq. (5). R is sensitive
to the change of input location. A counterintuitive re-
sult is that the smallest value of R is not reached at the
middle of the chain, i.e., i = 15 or i = 16. In contrast,
the smallest control range arises at i = 8 and i = 23,
about a quarter and 3 quarters of the chain. There exist
different levels of local minima as well, arising at specific
locations. Although there is no intuitive explanation for
the emerging phenomena from simple regular graph, the
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Fig. 2: (Color online) (a) Values of Ri for controlling each node in the Laplacian matrix of a chain with 30 nodes, the black
circles are obtained from eq. (5) and the solid circles are obtained directly by calculating the rank (C). (b) All possible values
of N − Ri for the Laplacian matrix vs. the chain length N . For a fixed value of N , there are a finite number of Ri values.
(c) DL, the number of distinct values of control range Ri vs. N . Each distinct value of DL is marked with a different symbol
and color.

numerical findings are in exact agreement with analytical
predictions. Figure 2(b) shows, two clusters of periodic
behavior of N − Ri present as N is increased. The peri-
odic phenomena can be verified in terms of eq. (5).

Furthermore, we explore the number of possible values
of control range of different system sizes. Specifically, let
DL denote the number of distinct values of control range.
According to the eq. (5), we note that 2i− 1, 2(N − i) + 1
are odd and 2i − 1 + 2(N − i) + 1 = 2N , hence the DL is
determined by the odd integer factors of 2N . As the sym-
metry of the chain, we only consider N for simplification.
Let us denote p as the odd integer factors of N and let lp
represents the number of the odd integer factors. Thus, we
can calculate NL through the number of all the possible
integer solutions satisfying the following equation:

N = lp · p (1 ≤ p ≤ N). (6)

If N is the product of even numbers, there is only one
integer solution of eq. (6): lp = N and p = 1, leading to
DL = 1 (the hollow triangles in fig. 2(c)). When N is a
prime number greater than 2 [34], DL = 2, because the
integer solutions are (lp, p) = (1, N) and (lp, p) = (N, 1),
as part of the red circles in fig. 2(c). �

Next, we consider the control range of a chain charac-
terized by an adjacency matrix. For a chain graph with
N nodes, the adjacency matrix is

AG = PN =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
1 0 1

. . . . . . . . .
1 0 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7)

and its eigenvalues are λk = 2 cos [πk/(N + 1)] for k =
1, . . . , N , and the algebraic multiplicity of each distinct
eigenvalue [32,33] is 1. We can prove that by imposing a

single input signal at location i,

Ri = (N + 1) − GCD(i,N + 1 − i). (8)

The control range Ri of a chain with size 47 is shown in
fig. 3(a). Figure 3(b) shows, the distribution of the control
range values vs. the network size N .

Let DA denote the number of distinct Ri in the case of
adjacency matrices. Since N+1 = i+(N−i+1), according
to the eq. (10), DA is determined by the integer factors of
N +1. Let us denote i = a∗p and N − i+1 = b∗p, where
fp = a + b and p is GCD(i,N − i + 1) (p ≤ �N/2� + 1).
Then, DA is the total number of possible integer solutions
of the following equation:

N + 1 = fp · p
(

1 ≤ p ≤
⌊

N

2

⌋
+ 1

)
. (9)

Thus, the solution of DA is related with prime num-
bers [34]. Specifically, if N + 1 is a prime number,
DA = 1, because the only one integer solution of eq. (9)
is fp = N + 1 and p = 1, as shown by the hollow triangles
in fig. 3(c). When N + 1 is the square of a prime number,
there are two integer solutions: (fp, p) = (N + 1, 1) and
(fp, p) = (

√
N + 1,

√
N + 1), accounting for DA = 2 (the

red circles in fig. 3(c)). �

Ring. – The Laplacian matrix of a ring graph with N
nodes is

AL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . −1
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 −1 2 −1
−1 0 0 . . . 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Its eigenvalues are λk = 2 − 2 cos (2π(k − 1)/N) for k =
1, . . . , N , showing that λk = λN−k+2 and most of the
Laplacian eigenvalues have double multiplicity [32,33,35].
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Fig. 3: (Color online) (a) Nodal control range Ri for the adjacency matrix of a chain with 47 nodes, where the black circles
are obtained from eq. (8) and the solid circles are obtained by calculating rank (C). (b) All Possible values of N − Ri for the
adjacency matrix of chain of different length N . (c) DA for the adjacency matrix of chain vs. system size N . Each distinct
value of DA is marked with a different symbol and color.

Fig. 4: (Color online) (a) R(Δ) for the Laplacian matrix of the ring vs. Δ for a ring graph with size 48, where the black circles
are obtained from eq. (12) and the solid circles are obtained from calculation of rank (C). (b) Distribution of the values of
N − R(Δ) for the Laplacian matrix of the ring vs. the system size N . (c) DR, the number of distinct values of control range
R(Δ) for the ring vs. N . Each distinct value of DR is marked with a different symbol and color.

As shown in the fig. 1(b), when we control both node i
and node j (i ≤ j, Δ ≡ j−i), the control matrix B reduces
to B(i,j) = [bi, bj ], and the ring splits into two subchains
with size Δ − 1 (nodes in blue) and N − Δ − 1 (nodes in
green), respectively. Because of the rotational symmetry
of ring, the control range R(i,j) is simply determined by
the value of Δ = j − i.

First, we prove that, for the control matrix B(i,i) =
Bi = bi, we have

R(i,i) = Ri = R(Δ=0) = �N/2�+1, for i = 1, . . . , N. (11)

Next, we prove that, when controlling node i and
node j (i 
= j), we have

R(i,j) = R(Δ) = N −
gcd(Δ)−1∑

k=1

ηk, (12)

where gcd(Δ) = GCD(Δ, N − Δ) and

ηk =

{
1, N · k/gcd(Δ) is even,

0, N · k/gcd(Δ) is odd.
(13)

The control range of different Δ, shown in fig. 4(a),
exhibits complex phenomena. Figure 4(b) shows all the
possible values of RΔ for different system size. Let DR

denote the number of distinct R(Δ) of the ring. The
dependence of DR on N is shown in fig. 4(c). �

For the adjacency matrix AG of ring graph (AG = 2I −
AL), AG has the same eigenvectors with AL [32,33], thus
the control range of controlling one node or two nodes are
also given as eqs. (11) and (12), respectively.

Conclusions. – In sum, we study the control range of
two simple regular graphs, chain and ring graphs, for a
given set of external inputs, and offer rigorous theoretical
predictions for the control range of both the Laplacian ma-
trix and adjacency matrix. We find that the control range
is quite related to the integer factoring and prime num-
bers, and shows special periodic behaviors. The presented
results gain insight into the complexity in controlling com-
plex networks and help us to develop a theorectical frame-
work for evaluating control range.
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Appendix. –

Proof of chain with Laplacian matrix. Because of the
special structure of AL, we firstly define a matrix Qμ ∈
R

μ×μ as

Qμ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A.1)

whose μ distinct eigenvalues are λk = 2 −
2 cos [(2k − 1)π/(2μ + 1)] for k = 1, . . . , μ [32,33].

To satisfy eq. (2), the corresponding eigenvector v of
AL must be in the form v = [v1, 0,v2]T,v1 ∈ R

i−1,v2 ∈
R

N−i. Component-wise eq. (2) is written as

Qi−1 · v1 = λv1,

(v1)i−1 + (v2)1 = 0,

(ΠQN−iΠ) · v2 = λv2,

(A.2)

where (v1)i−1 is the (i−1)-th element of the vector v1 and
(v2)1 is the first element of the vector v2. Π = ΠT = Π−1

is the symmetric permutation matrix which reverses all the
components of a vector. It is easily verified that (Qi−1)
and (ΠQN−iΠ) have the same eigenvalue in the sense that
Π is an orthogonal matrix [36,37].

According to the similar proof routines in ref. [30], to
satisfy the first and third conditions in eq. (A.2), v1 and
v2 should be the corresponding eigenvectors of λ for Qi−1

and QN−i, respectively. For the second condition, if Qi−1

and QN−i have at least one common eigenvalue, say λ0,
with corresponding eigenvectors v10 and v20, respectively.
Then, we get v = [v10, 0, av20] and λ = λ0, which satisfy
eq. (A.2), where a is a scaling factor given by (v10)i−1 +
a(v20)1 = 0.

We thus see that, if Qi−1 and QN−i have one com-
mon eigenvalue, there exists one corresponding eigen-
vector satisfying eq. (2). Note that the eigenvalues of
Qi−1 and QN−i are given as λm = 2 − 2 cos [ (2m−1)π

2i−1 ]

(m = 1, . . . , i − 1) and λn = 2 − 2 cos [ (2n−1)π
2(N−i)+1 ] (n =

1, . . . , N − i), respectively. Thus the number of solutions
for (2m−1)

2i−1 = (2n−1)
2(N−i)+1 is given by {GCD(2i − 1, 2[N −

i] + 1)− 1}/2, correspondingly, there exist the same num-
ber of eigenvectors satisfying eq. (2). Thus, we obtain the
eq. (5). �

Proof of chain with adjacency matrix. When control-
ling node i only, the chain splits into two subchains with
size i − 1 and N − i, whose corresponding matrices are
Pi−1 and PN−i, respectively. Following the similar proof
of the Laplacian case, any eigenvector v = [v1, 0,v2] ∈
Vλ∩N(BT) associated with the eigenvalue λ satisfies Pi−1 ·
v1 = λv1, (v1)i−1 +(v2)1 = 0 and PN−i ·v2 = λv2, where
v1 and v2 with (v1)i−1 + a(v2)1 = 0 is the correspond-
ing eigenvector of Pi−1 and PN−i, respectively. Similarly,

the number of the eigenvector v is one-to-one correspon-
dence with the eigenvalue λ. Note that the eigenvalues
of Pi−1 and PN−i are given by λm = 2 cos (πm/i) (for
m = 1, . . . , i − 1) and λn = 2 cos [πn/(N − i + 1)] (for
n = 1, . . . , N − i), respectively, hence the number of com-
mon eigenvalues is given by GCD(i,N − i + 1)− 1. Thus,
eq. (8) is verified. �

Proof: ring, Laplacian, single control. Without loss
of generality, we impose a control signal at node 1. We
first define a matrix Mμ as

Mμ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.3)

It can be easily verified that the eigenvalues of Mμ is

λk = 2 − 2 cos [πk/(μ + 1)] for k = 1, . . . , μ, (A.4)

and the corresponding eigenvector of λk is (vk)m = sin[m ·
k · π/(μ + 1)] [30,32,33].

The corresponding eigenvector v of AL that satisfies
eq. (2) should be in the form v = [0,vk] and follows the
constraints below:

(vk)1 + (vk)N−1 = 0,

(MN−1) · vk = λkvk,
(A.5)

where λk and vk ∈ R
N−1 are the k-th eigenvalue and

eigenvector of MN−1, respectively. The first condition
of eq. (A.5) shows that the first and last components
of vk have the same absolute value but opposite sign.
As we know, (vk)1 = sin [k · π/N ] and (vk)N−1 =
sin [(N − 1) · k · π/N ] = sin(kπ − kπ/N). According to
the trigonometric formulas, we have: when k is odd,

(vk)N−1 = sin [π − k · π/N ] = (vk)1; (A.6)

when k is even,

(vk)N−1 = sin [2π − k · π/N ] = −(vk)1. (A.7)

Clearly, the necessary and sufficient condition for
(vk)1 + (vk)N−1 = 0 is k is even. Thus, there are
�(N − 1)/2� pairs of eigenvalue and eigenvector satisfying
eq. (A.5). Therefore, we have R(Δ=0) = N−�(N−1)/2� =
�N/2� + 1. �

Proof: ring, Laplacian, control two nodes. Without
loss of generality, let i = 1, j = Δ + 1. Then, any of the
nonzero solution vectors v ∈ R

N of AL satisfying eq. (2)
should be in the form v = [0,vk1 , 0,vk2 ] and satisfying

(vk1)1 + (vk2)N−Δ−1 = 0,

MΔ−1 · vk1 = λk1vk1 ,

(vk1)Δ−1 + (vk2)1 = 0,

(MN−Δ−1) · vk2 = λk2vk2 ,

(A.8)
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where (λk1 ,vk1) (vk1 ∈ R
Δ−1) and (λk2 ,vk2) (vk2 ∈

R
N−Δ−1) are the k1-th and k2-th eigenvalue and eigen-

vector pairs of MΔ−1 and MN−Δ−1, respectively. For the
second and fourth conditions in eq. (A.8), there must ex-
ist common eigenvalues shared by MΔ−1 and MN−Δ−1.
According to eq. (A.4), the number of common eigenval-
ues is GCD(Δ, N − Δ) − 1 = gcd(Δ) − 1.

Because of the special relations between the first en-
try and last entry of vk1 (and vk2) shown in eqs. (A.6)
and (A.7), to satisfy the first and third conditions of
eq. (A.8), the entries of vk1 and vk2 should follow
(vk1)1 = (vk1)Δ−1 and (vk2)1 = (vk2)N−Δ−1 or (vk1)1 =
−(vk1)Δ−1 and (vk2)1 = −(vk2)N−Δ−1, which means
k1 and k2 should both be even or odd, or equivalently,
(k1 + k2) = Δ·k

gcd(Δ) + (N−Δ)·k
gcd(Δ) = N · k/gcd(Δ) is even,

where k represents the k-th common eigenvalue. For the
sake of clarity, we define ηk as eq. (13). Thus, combining
all the conditions, we have eq. (12). �
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